The Future Internet Research Plan in Korea

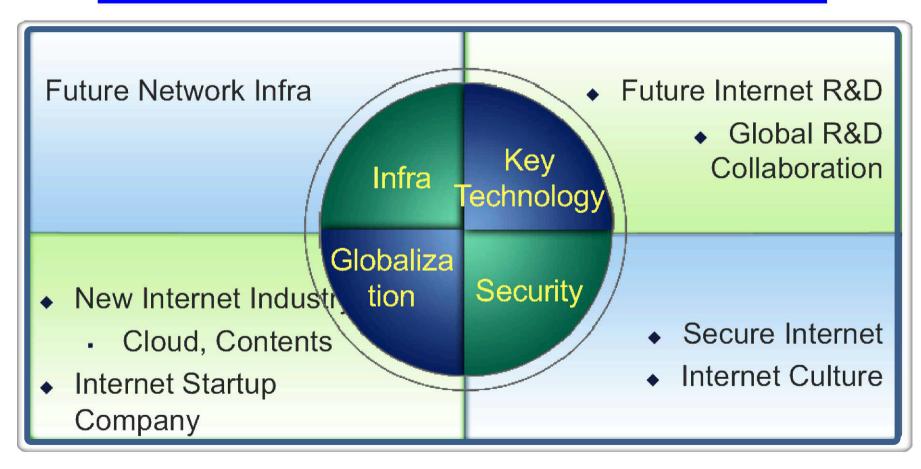
Aug. 2011

Lee, Younghee

Future Internet Project Manager, Korea Communications Commission(until Aug. 20)

Professor, Dept. of Computer Science KAIST (From Aug. 21)

Contents


- Internet Plan for future in Korea
- Internet in Korea
- Smart Networks
- Projects for future Internet
- Conclusions

Internet Plan for future in Korea

- Korea Communications Commission (KCC)
 - ➤ National Agenda: Long term big national initiative
 - Future Internet Promotion Committee: 2010.6 ~
- Internet Plan for future:
 - Report to President of Republic of Korea at 29th June 2011

Vision & Strategy

Total Investment Government \$500M, Private sector \$37B for 5 ye<mark>ars</mark>

Future Network Infrastructure

100 times faster Internet until 2020

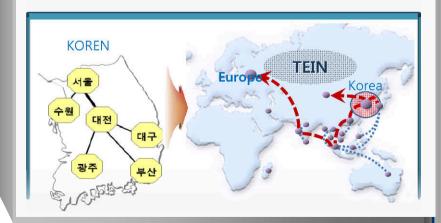
- Investment \$7B/year from ISP -

Network Infra

- 4G Service
 - LTE : Seoul '11 ⇒ Nationwide '14
 - WiBro
- Gigabit Internet '12⇒ 10Gbps '20
- Network Infra structure for Video and High volume contents oriented Internet service: '20

Frequency band

- Available bandwidth:
 - Two times more
- Analog TV Channel (108MHz), White space


Future Internet R&D, Global Collaboration

Future Internet Technology

- Investment: \$250M 2011 ~ 2015
- Mobility, Trustworthy, CCN...
- Green Internet
- Next Generation User Interface, Semantic web

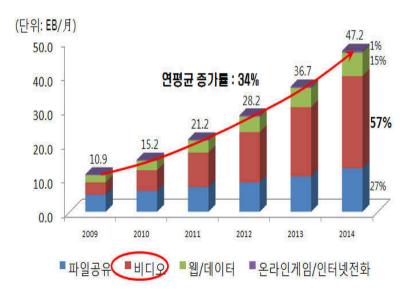
Global Testbed

- KOREN
 - 10~20Gbps ⇒ 100Gbps
- TEIN center
- * TEIN: Trans Eurasia Information Network

2011-08-01

Internet in Korea

- Number of Internet users: 34.4 M
- Penetration: 77.8%
 - Building & Apt. built since 1995
 - Broadband Certification System


Security Problems

- There has been quite frequent
 - DDoS Attacks from ...
 - GPS Jamming from ...
 - Hacking: bank, ISP (3 days ago)

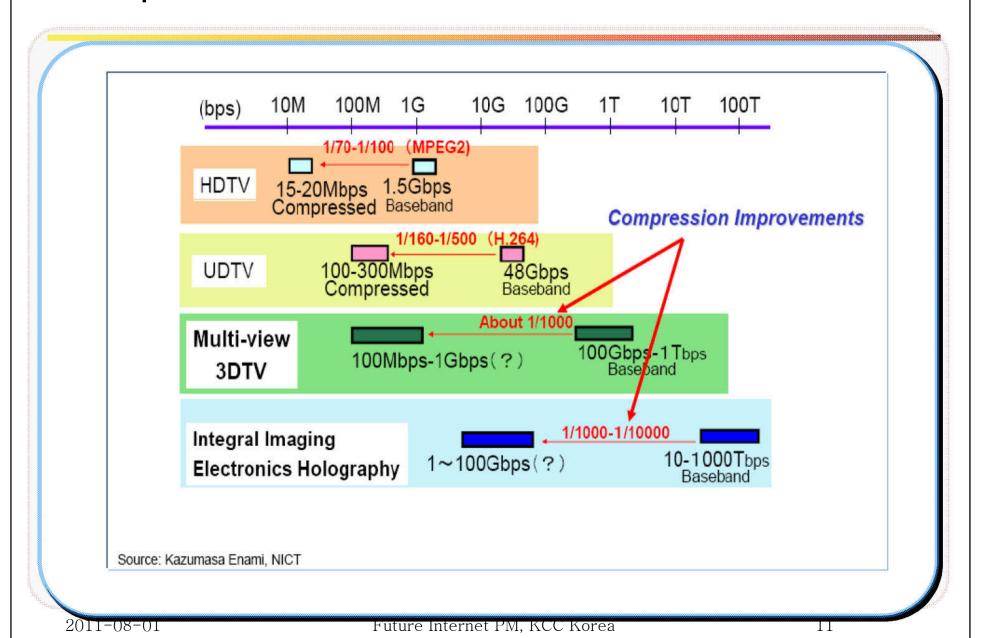
• "Security" is the most critical problems in Korea.

Traffic Explosion

- Traffic of 2010 vs. Traffic of 2020
 - Wired line 18 times:
 - Wireless line: 1253 times
- In the year 2020: 90% of traffic will be Video
- Average Growth rate of Internet traffic: 34% exponentially
 - 2014: total traffic will reach to 47.2EB* per month
 - 2020: 273.1EB per month
 - * EB (Exa Byte) = 10^{18} Byte

Internet annual growth rate of Korea(Source: ISP's of Korea)

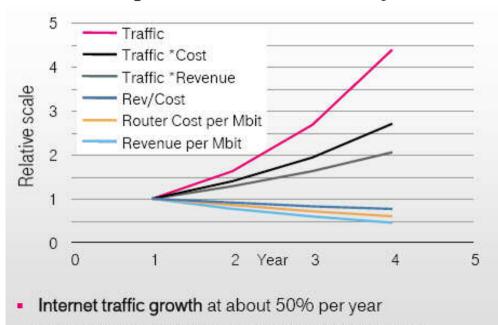
Wired/Wireless Gigabit Internet

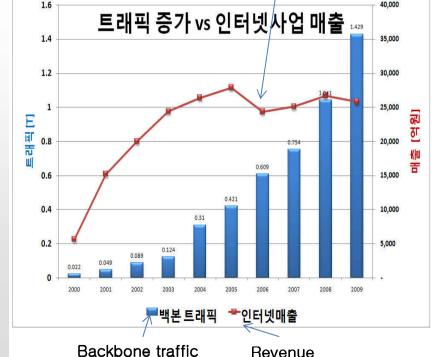

• Why Gigabit?

- High Resolution or 3D Video traffic: ~ 40% growth rate per year
- Smart TV, Smart Phone, IPTV, Wireless Internet, Wi-Fi, P2P, Data centers, cloud servers
- Paradigm shift
 - PAST: Mainframe, Dumb terminal, Voice communications
 - Present: Distributed Computing, Intelligent devices, Multimedia com.
 - Future: Centralized Cloud, Thin client, Realistic Communications

Gigabit Internet

- Gigabit Internet Commercialization: 2012
- 10G Gigabit Internet Trial: 2016
- Take advantage of Broadband Access Environment of Korea


Required Bandwidth for future video services


Traffic Explosion

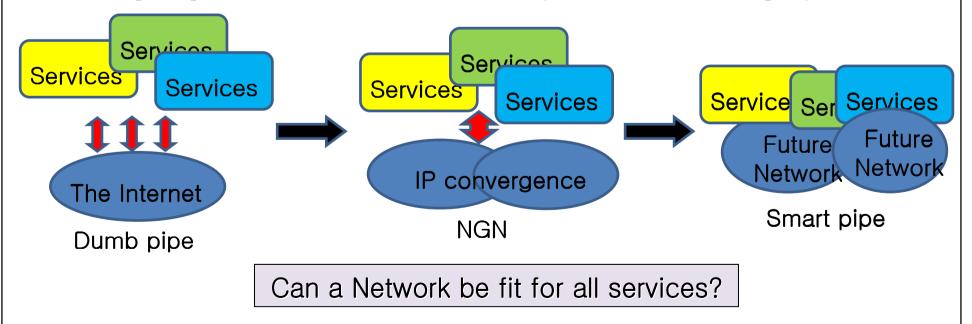
- Growth rate of Internet user, revenue: linear growth
- Growth rate of Internet traffic: exponential growth
- Traffic explosion => Revenue explosion?

- Nope! Revenue stays or even decrease!

- Cost reduction of router per Mbit/s 15 % per year
- Revenue per Mbit/s falls steeper (22 % per year)

2006

Source: Deutsche Telekom


Source: KORNET Korea

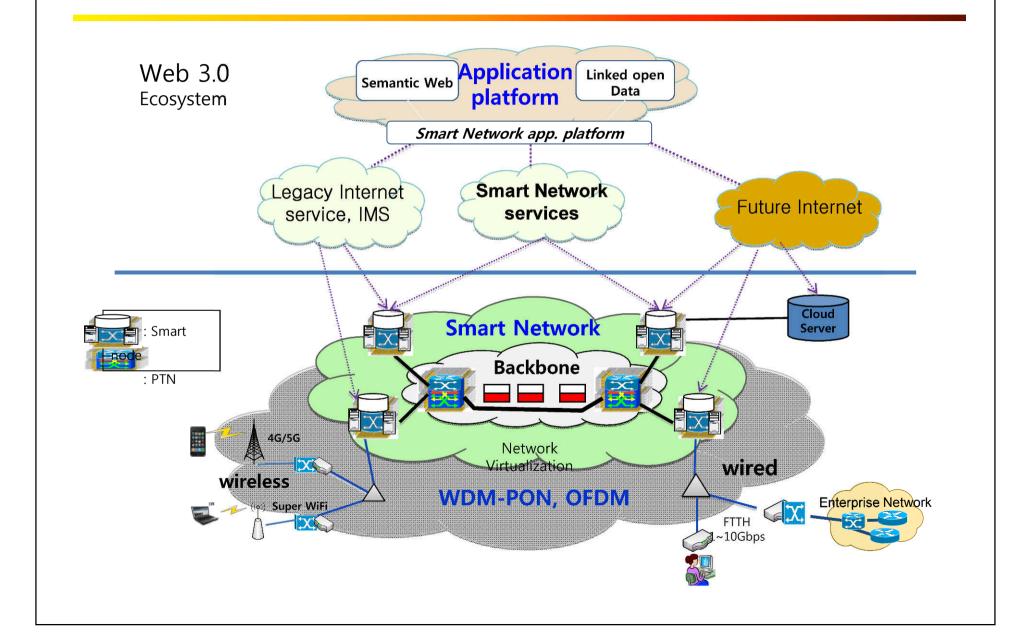
2011-08-01

Future Internet PM, KCC Korea

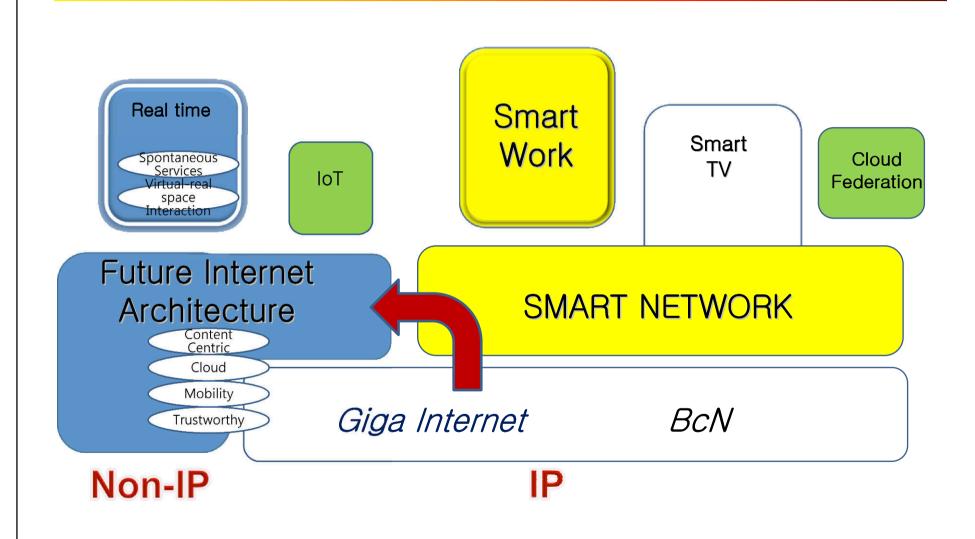
Future of the Internet

- From dumb pipe to Smart pipe for smart services
- Service + Future Network: Smart Energy, Smart Transport, Smart Health, Smart Living, Smart education: Through Cloud Services: Data protection is Key issue
- From protected garden to open space
 - IPTV: protected garden under NGN => smart TV => Smart mobile device + Dumb TV
- Sharing: App, Content, Knowledge….: prosumer
 - > Open platform for win-win eco-system. + IPR for player

Evolutionary or Clean Slate?

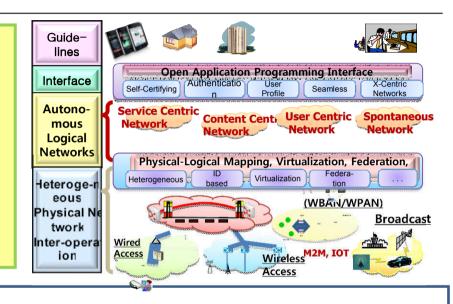

- Plant the seeds that enable future research experiments*
 - > Testbed
 - Insights from clean slate research help guide the ongoing evolution
- Internet as evolving ecosystem*
 - > Internet monitors, estimation of traffic flow,
- Better network
 - > Additional value > Transition cost
 - > Market will decide.
 - Additional value > Transition cost ? =>
 - Need intelligent & composable open architecture
 - > Smart network, Smart node: "fit for purposes"
 - * Jennifer Rexford, Constatine Dovrolis "Future Internet Architecture: Clean-Slate Versus Evolutionary Research" Communications of the ACM Sep. 2010

Smart Network


- Which services will open the customer wallet?
 - ◆ Fair competition between ...

 - ♦ Media, e-commerce..: Skype, Amazon, e-bay
 - ♦ End node devices: Apple, Nokia, Samsung
 - ♦ Operator, equipment: ISP
- ◆An approach for operator: Dumb pipe => Smart pipe
 - > Smart Network: (Content) + Service + Network Integration
 - Revenue creation => Investment to Infra => Cheaper Internet price
 - ➤ How can we make it competitive?
 - Smart network node contains processing/storage/specialized forwarding/secure channel/signal processing/ functions for highly efficient applications:
 - Smart work, Cloud networking etc.,,
- Open platform for all => innovative/creative Internet services

Smart Network


Future Internet R&D

Project: Future Internet Architecture

Overview

- ◆ Coordination among Future Internet Related Projects
- ◆ Develop an Integrated Polymorphic Network Architecture
- Design Trustworthy Communication Infrastructure
- ◆ Collaborate with Foreign Future Internet Research Groups

- Project title: Development of Future Internet common conceptual architecture and inter-operation techniques for trustworthy communication
- Project coordinator : Dr. Woojik Chun, ETRI (wjchun@etri.re.kr)
- Duration : Mar. 2011 Feb. 2014 (3 year)

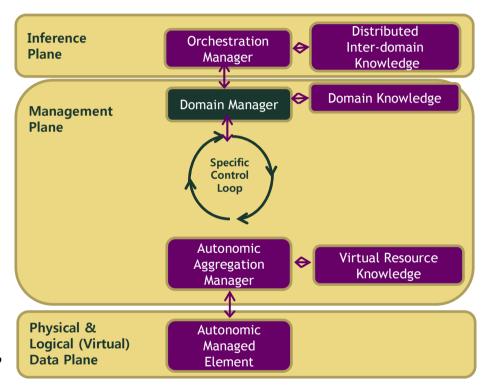
Project: Future Internet Architecture - mobility

- Overview
 - Design new architectures to address envisioned future mobile and network diversity environment
 - Developing MOFI and INAF
 - MOFI (Mobile Oriented Future Internet)
 - Designed for mobile environment & network diversity
 - Refer http://www.mofi.re.kr
 - INAF (InterNetworking Architecture for Future networks)
 - Designed for service interworking b/w legacy Internet and FIs
 - Project title: Study on Architecture of Future Internet to Support Mobile Environments and Network Diversity
 - Project coordinator : Heeyoung JUNG, ETRI(hyjung@etri.re.kr)
 - Duration: 1 Mar. 2010~28 Feb. 2013 (3 years)

Project: Future Internet Architecture - NDN

Overview

- 1) NDN Architecture Design
 - Content Routing (Name Resolution), Content Caching Strategy
- 2) NDN over Wireless Networks
 - Mobility support, Collaborative transmission, Service delegation VDN over Wireless Networks
 - Develop NDN base station
- 3) Testbed & application service


- Project title: Fundamental Research on In-network Caching and Routing for Named-data Networking
- Project coordinator : Seoul National University
- Duration: 2011.3.1-2014.2.28 (36 months)

Project: Future Internet Architecture - management

Overview

To define a holistic autonomic management architecture that encompasses both the Evolutionary Approaches and the Revolutionary approaches to overcome the legacy management limitations

- A novel knowledge representation mechanism, based on models and ontologies,
- A distributed architecture that separates the functions of the data, control, and management planes
- An extensible architecture that dynamically adapts the behavior of managed devices
- A set of protocols for distributing, querying, retrieving, and managing semantic data

- Project title: Highly Manageable Network and Service Architecture for New Generation
- Project coordinator : Taesang Choi (ETRI, Future Internet Architecture Research Team)
- Duration: 2010.3.1 ~ 2013.2.28

Project: Future Internet Architecture – Testbed

Overview

- Objectives
 - Network Virtualization R&D
 - Network Programmability R&D
 - Development of Programmable Network Virtualization Platform
 - PC based Platform Development for Dynamic Service Control
- Project Results
 - Functional Development of NP based Network Virtualization for Data Plane
 - Programmable Network Virtualization Platform 1.0
 - Platform Establishment in KOREN's FI-testbed
- Project title: Development of the Core Technology and Virtualized Programmable Platform for Future Internet
- Project coordinator : Yang, Sun Hee (shyang@etri.re.kr)
- Duration : Mar. 1, '09 ~ Feb. 28, '14 (5 years)

Project: Future Internet Architecture - Testbed

Overview

- Objectives
 - R&D for Virtualized Network Control Framework
 - R&D for Federation of Various Physical Networks(GENI, AKARI, FP7/FIRE etc.)
 - R&D for OpenFlow Switching @ FiRST Platform
 - KOREN/KREONET Evolution to Virtualized FI Testbed
- Project Results
 - FiRSTProNET 1.0 : Virtualized Network Control Solution
 - CF(Control Framework) Federation Adaptor: S/W adaptor prototype
- Project title: Future Internet Testbed Construction for International Federation and Collaboration
- Project coordinator: Yang, Sunhee (shyang@etri.re.kr)
- Duration : March 1, 2010 ~ February 28, 2014 (4 years)

23

Project: Future Internet Architecture - DTN

Overview

Using DTN technology, seeking solutions for the problems

- Base stations are overloaded by data exploration of smartphone usage (we call the solution as DTN-Cellular)
- •The communication is inefficiency between sensor network and Internet (DTN-Sensor)
- -Keywords: Mobility Patterns, Access Patterns, Energy Efficiency AP/Sensor/Mobile Scanning, Data Offloading, Incentive Routing, Pricing Mechanism.
- Project title: Delay-Tolerant Network (DTN) technology for wireless cellular and sensor networks
- Project coordinator: Yung Yi (KAIST) with Song Chong (KAIST), Kyungsoo Park (KAIST), Seungjae Han (Yonsei Univ.)
- Duration: 2011.3.1 ~ 2014.2.28 (3 Years)

Project: Future Internet Architecture – IoT Service

Overview

To provide <u>Future Internet Service Platform</u> providing usercentric services, which are closely related to users's daily life and work in <u>Smart Internet of Things(IoT) Environments</u> Limitations of existing approaches:

- Location, temporal information-based context-awareness
- •Context Inference from small-scale semantics collected from limited number of sensors
- Pre-defined service composition
- •Simplex information and service provision without concerning physical world

Key ideas:

- ■To efficiently collect and manage large-scale semantic sensor data from various IoT sensors
- ■To provide context-awareness based on complex of social, spatial, and temporal perspectives
- ■To proactively support user's various goals by composing cyber and physical services
- ■To provide an interaction of cyber-physical services referring physical constraints of IoT actuators

- Project title: Smart IoT-based Spontaneous Service Composition
- Project coordinator : Lee, Dongman (KAIST, dlee@cs.kaist.ac.kr)
- Duration : March 1, 2011 ~ February 28, 2014 (3 years)

Project: Smart Work

Overview

- 1) Tele-presence Service Platform
 - Collaboration architecture, Control method, Prototype System
- 2) Adaptive & Immersive User Interface
 - Dynamic UI, Audio mixing & echo-free
- 3) Security
 - Secure execution environment for mobile devi

Project title: Development of Immersive Smart Work Tech. for

Collaboration

Project coordinator : ETRI

Duration: 2011.3.1-2015.2.28 (48 months)

Project: Smart Network

- Overview
- 1) Design architecture of smart node
- 2) Cloud Networking
 - high reliability cloud networking
 - smart node virtualization
- 3) Overlay-based content delivery smart networking control
 - contents delivery and routing
 - contents copy/cashing and search engine
 - content-based traffic control
- Project title: R&D on Smart Node Technology for Cloud Networking and Contents Centric Networking
- Project coordinator: Hoyoung Song ETRI(hsong@etri.re.kr)
- Duration: 2011.3.1 ~ 2014.2.28 (3 Years)

Project: on-going projects on the Internet

	Project Title	Duration	Coordinator
1	Development of the core technology and virtualized programmable platform for Future Internet	''09.3 ~ '14.2	ETRI
2	Future Internet Test-bed Construction for International Federation and Collaboration	'10.3 ~ '14.2	ETRI
3	Study on Architecture of Future Internet to Support Mobile Environments and Network Diversity	'10.3 ~ '13.2	ETRI
4	High Speed Virtual Router that Supports Dynamic Circuit Network	'10.3 ~ '15.2	Yonsei Univ.
5	Development of Future Internet common conceptual architecture and inter-operation techniques for trustworthy communication	'11.3 ~ '14.2	ETRI
6	R&D on Smart Node Technology for Cloud Networking and Contents Centric Networking	'11.3 ~ '14.2	ETRI
7	Low-Noise and Multi-Wavelength optical sources for high speed optical networks	'09.3 ~ '14.2	KAIST
8	Large-scale wireless-PON convergence technology utilizing network coding	'09.5 ~ '14.2	KAIST
9	Coherent optical OFDM technologies for next generation optical transport networks	'08.11 ~ '13.10	ETRI
10	High-capacity WDM-PON system for next-generation multi-service applicable access platform	'10.3 ~ '14.2	ETRI
11	CASFI (Collect, Analyze, and Share for Future Internet): High-Precision Measurement and Analysis Research	'08.3 ~ '13.2	KAIST

Project: on-going projects on the Internet

	Project Title	Duration	Coordinator
12	Development of Real-time Traffic's Integrated Control Platform for Clean Internet and Fair Interconnection Environment	'09.3 ~ '13.2	ETRI
13	Research on Ubiquitous Mobility Management Methods for Higher Service Availability	'08.3 ~ '13.2	Korea Univ.
14	Delay-Tolerant Network (DTN) Technology for Wireless Cellular and Sensor Networks	'11.3 ~ '14.2	KAIST
15	Fundamental Research on In-network Caching and Routing for Named-data Networking	'11.3 ~ '14.2	Seoul Univ.
16	Development of group service and service continuity control technology in the broadcast and telecommunication converged Environment	'09.3 ~ '12.2	ETRI
17	Development of Customer Oriented Convergent Service Common Platform Technology based on Network	'09.3 ~ '14.2	ETRI
18	Research and development of composite context based adaptive service path configuration technology	'10.3 ~ '13.2	ETRI
19	Smart IoT-based Spontaneous Service Composition	'11.3 ~ '14.2	KAIST
20	Study on Acoustic Convergence Codec and its Control Technology for FMC	'08.3 ~ '12.2	ETRI
21	R&D on Multi-layer Optical Network Control Platform Technology	'08.3 ~ '12.2	ETRI
22	Novel Study on Highly Manageable Network and Service Architecture for New Generation	'10.3 ~ '13.2	ETRI
23	Development of Immersive SmartWork Tech. for Collaboration	'11.3 ~ '15.2	ETRI

Global Collaboration

- Europe, CJK, USA
- Korea EU collaboration
 - Korea Government EU meeting at July 7 to 8, 2011 in Seoul
 - Consortium for Call 8?
 - 5 areas including FIRE, FI services
 - EU ISTAG meeting in Brussels
 - ISTAG: The Information Society Technologies Advisory Group
 - G-Lab, France, Spain
- Subjects?
 - Various Future Internet Architecture
 - Smart Networks
 - Experiment Environments
 - Future Internet Services

Conclusion

- Internet Traffic explosion
 - Video, mobile
 - Revenue Creation
- Future of the Internet Services
 - Cloud computing
 - Smart Pipe
- Global Collaboration